Cnoidal wave solutions to Boussinesq systems

نویسندگان

  • Hongqiu Chen
  • Min Chen
  • Nghiem V Nguyen
چکیده

In this paper, two different techniques will be employed to study the cnoidal wave solutions of the Boussinesq systems. First, the existence of periodic travelling-wave solutions for a large family of systems is established by using a topological method. Although this result guarantees the existence of cnoidal wave solutions in a parameter region in the period and phase speed plane, it does not provide the uniqueness nor the non-existence of such solutions in other parameter regions. The explicit solutions are then found by using the Jacobi elliptic function series. Some of these explicit solutions fall in the parameter region where the cnoidal wave solutions are proved to exist, and others do not; so the method with Jacobi elliptic functions provides additional cnoidal wave solutions. In addition, the explicit solutions can be used in many ways, such as in testing numerical code and in testing the stability of these waves. Mathematics Subject Classification: 34L30, 35Q51, 35Q53, 35S15,42A16, 46N20, 65L10, 65T40, 65T50, 76B03, 76B15, 76B25 (Some figures in this article are in colour only in the electronic version)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral Stability of Stationary Solutions of a Boussinesq System Describing Long Waves in Dispersive Media

We study the spectral (in)stability of one-dimensional solitary and cnoidal waves of various Boussinesq systems. These systems model three-dimensional water waves (i.e., the surface is two-dimensional) with or without surface tension. We present the results of numerous computations examining the spectra related to the linear stability problem for both stationary solitary and cnoidal waves with ...

متن کامل

Galerkin Approximations of Periodic Solutions of Boussinesq Systems

We consider the periodic initial-value problem for the family of a-b-c-d Boussinesq systems, [8], [9], and their completely symmetric analogs, [10]. We approximate their solutions by the standard Galerkin-finite element method using smooth periodic splines for discretizing in space. We prove optimal-order L error estimates for the resulting semidiscretizations. The numerical schemes are usual i...

متن کامل

Existence and Orbital Stability of Cnoidal Waves for a 1D Boussinesq Equation

We will study the existence and stability of periodic travelling-wave solutions of the nonlinear one-dimensional Boussinesq-type equation Φtt −Φxx + aΦxxxx − bΦxxtt +ΦtΦxx + 2ΦxΦxt = 0. Periodic travelling-wave solutions with an arbitrary fundamental period T0 will be built by using Jacobian elliptic functions. Stability (orbital) of these solutions by periodic disturbances with period T0 will ...

متن کامل

Sine-Gordon Soliton on a Cnoidal Wave Background

The method of Darboux transformation, which is applied on cnoidal wave solutions of the sine-Gordon equation, gives solitons moving on a cnoidal wave background. Interesting characteristics of the solution, i.e., the velocity of solitons and the shift of crests of cnoidal waves along a soliton, are calculated. Solutions are classified into three types (Type-1A, Type-1B, Type-2) according to the...

متن کامل

Soliton on a Cnoidal Wave Background in the coupled nonlinear Schrödinger equation

An application of the Darboux transformation on a cnoidal wave background in the coupled nonlinear Schrödinger equation gives a new solution which describes a soliton moving on a cnoidal wave. This is a generalized version of the previously known soliton solutions of dark-bright pair. Here a dark soliton resides on a cnoidal wave instead of on a constant background. It also exhibits a new types...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007